Transport in networks with multiple sources and sinks
نویسندگان
چکیده
We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, increasing n improves the total transport in the network, while for large n bottlenecks begin to form. For the case of flow, this leads to an optimal n above which the transport is less efficient. For current, the typical decrease in the length of the connecting paths for large n compensates for the effect of the bottlenecks. We also derive an expression for the average flow as a function of n under the common limitation that transport takes place between specific pairs of sources and sinks.
منابع مشابه
THE EUROPEAN PHYSICAL JOURNAL B Transport between multiple users in complex networks
We study the transport properties of model networks such as scale-free and Erdös-Rényi networks as well as a real network. We consider few possibilities for the trnasport problem. We start by studying the conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks predicts a broad range of values of G, with a ...
متن کاملResearch in Transport and Congestion Control Mechanisms for Sensor Networks
This proposal presents a research agenda for investigating system support for reliable communication in sensor networks. The proposed research addresses two problems-transport issues and congestion control. Sensor networks come in a wide variety of forms, covering different geographical areas, being sparsely or densely deployed, using devices with a variety of energy and processing constraints,...
متن کاملOFFPRINT Transport in networks with multiple sources and sinks
We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, increasing n improves the total transport in the network, while for large n bottlenecks begin to form. For the case of flow, this leads to an optimal n...
متن کاملSolving Classical and New Single Allocation Hub Location Problems on Euclidean Data
Transport networks with hub structure organise the exchange of shipments between many sources and sinks. All sources and sinks are connected to a small number of hubs which serve as transhipment points, so that only few, strongly consolidated transport relations exist. While hubs and detours lead to additional costs, the savings from bundling shipments, i.e. economies of scale, usually outweigh...
متن کاملMulti-objective optimization of nanofluid flow in microchannel heat sinks with triangular ribs using CFD and genetic algorithms
Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0805.1567 شماره
صفحات -
تاریخ انتشار 2008